
TECHNICAL ARTICLE

Sensor Fusion and Motion Control
for Autonomous Racing Cars

challenge state-of-the-art planning and control
algorithms. �e work done by the team enlarges the
operational design domain (ODD) of these algorithms,
resulting in improved robustness to the extreme
conditions on the racetrack.

Figure 1 - DevBot 2.0 at the Monteblanco racetrack

To bene�t from these developments, the Chair of
Automotive Technology and the Chair of Automatic
Control of the TUM decided to take part in the Roborace
competition for autonomous racing to benchmark their
research on a full-size racing vehicle [1], called ‘DevBot
2.0’. �e vehicle has been developed by Roborace based
upon a standard Le Mans Prototype (LMP) chassis and is
driven by two electric motors on the rear axle. �e main
idea behind the competition is to equip teams with an
identical car hardware platform so that the performance
only depends on the algorithm design and the team
performance. �e autonomous driving so�ware stack
runs on an NVIDIA Drive PX2 and a Speedgoat Mobile
real-time target machine. During the Season Alpha in
2019, the teams carried out di�erent tasks, such as
minimizing lap time, racing multiple vehicles on a
circuit in classic race formats and optimizing on-track
localization and driving precision. �is diversity of
challenges required the TUM team to develop a holistic
so�ware architecture. �is article will focus on the
motion control and the sensor fusion parts of the
so�ware stack. �e reader is referred to [3] and [4] for
further details on the remaining so�ware modules and
how they are interconnected with the algorithms
presented.

Abstract
�is whitepaper describes the use of Speedgoat hardware
and the related Simulink toolchain for the Roborace
research project at the Technical University of Munich
(TUM). �e team is developing an autonomous driving
so�ware stack capable of operating a racing vehicle close
to its physical limits. Speedgoat real-time solutions are
used within the car (a real-time rapid prototyping
controller unit) and to set up a hardware-in-the-loop
(HIL) simulation. In the following whitepaper, we
provide an overview of the motion control and sensor
fusion algorithms and present open source packages for
these functions ready to be used with o�-the-shelf
Speedgoat hardware.

Introduction
Autonomous driving is a topic of signi�cant interest to
industry and academia peers. Applying theoretical
�ndings to research-level prototypes and then produc-
tion vehicles is a key challenge. To address this and
facilitate rapid prototyping, we present a so�ware stack
for an autonomous vehicle capable of vehicle motion
control and localization using sensor fusion and a
real-time testing work�ow. While the former can serve
as a track-proven basis for future research projects, the
latter speeds up the development and gives high-quality
experimental results at signi�cantly lower cost and e�ort
than trials with a full-size vehicle prototype. �e work
completed by the TUM was supported by Speedgoat.
Simulink® was chosen as the main modeling tool and
Speedgoat real-time target machines together with
Simulink Real-Time™ as the real-time prototyping and
testing platform.

Roborace Research Project at the TUM
Racing has always provided incentive to develop new
automotive technologies. High speeds and operation at
the vehicle’s handling limit enable engineers to identify
shortcomings with current technology and therefore
enhance hardware and so�ware beyond state-of-the-art
standards. One of the key challenges is the development
of algorithms with low calculation periods but
su�ciently accurate results. Furthermore, the dynamic
and unstructured driving situations at the racetrack

Sensor Fusion and Motion Control for Autonomous Racing Cars

Source: TUM Roborace Team

https://www.roborace.com/
https://www.roborace.com/

Testing the controls was another major challenge since
the track time was very limited. While desktop
simulation can help to run initial tests, real-time aspects
and communication interfaces cannot be covered with
this approach. To cover these aspects, the team used a
Speedgoat Performance real-time target machine. By
running their vehicle model in real-time and using the
actual hardware interfaces, the team was able to test
their controls early on under realistic conditions.

�e major advantages of this approach are:

 • Testing safety critical functions in advance without
 risking damage to the vehicle

 • Finding errors that would otherwise appear on the
 track

 • Optimizing the performance of the controls

�is allowed the team to make the best use of limited
track time.

Importance of Real-Time Prototyping and
Testing for Control Software Development
in AD
Driving at the handling limits presents signi�cant
challenges for autonomous driving so�ware:

 • Multiple sensor signals must be combined to
 determine accurate and reliable information about
 the current vehicle state. �ese signals are captured
 at di�erent rates and resolutions. Merging sensor
 signals will subsequently be referred to as sensor
 fusion.

 • �e vehicle motion dynamics must be stabilized
 around a target race trajectory. �is requires feedback
 information to mitigate external disturbances like
 wind gusts, track inclination and tarmac
 irregularities. �is continuous process of stabilization
 will subsequently be referred to as vehicle motion
 control.

To optimize the performance of control and fusion
algorithms, high sampling rates, deterministic timing
and real-time execution are crucial.

To enable this, the research team at TUM used Simulink
Real-Time and a Speedgoat Mobile real-time target
machine for rapid control prototyping. Directly from
within Simulink, this allowed the team to:

 • Deploy and execute the controls in real-time

 • Tune parameters and log data

 • Access the required communication interfaces

With this, the team was able to quickly iterate, tune and
test their control designs and minimize the time needed
for hardware and so�ware integration.

Sensor Fusion and Motion Control for Autonomous Racing Cars

MathWorks provides Simulink Real-Time, which
includes a real-time operating system as well as several
host capabilities that enable real-time applications to be
created from Simulink models, deployed on Speedgoat
real-time target machines, and controlled directly from
Simulink and MATLAB®.

Mobile real-time target machine

�e TUM Roborace Team uses a Speedgoat Mobile
real-time target machine in the DevBot 2.0.

�e system is con�gured as follows:

 • Processor: Intel i7 2.5 GHz Dual Core
 • RAM: 4 Gb
 • Modules: IO601 for CAN communication

Software and Hardware
To replicate the conditions under which the controls
described in this article will eventually be used in the
DevBot 2.0 as closely as possible, an identical real-time
prototyping platform was used. �is joint solution from
MathWorks® and Speedgoat for deterministic real-time
prototyping and testing consists of Simulink Real-Time
and Speedgoat real-time target machines.

Speedgoat‘s solution for real-time simulation consists of
the target machines that can be con�gured using
Speedgoat’s broad range of I/O and FPGA modules.
�ese modules enable users to directly interface with the
vehicle’s networks, sensors, and actuators and, if needed,
deploy algorithms onto FPGAs to achieve higher
sampling rates.

�e toolchain provided by Speedgoat and MathWorks
enables the algorithms designed in Simulink to be
directly transferred to a real-time platform o�ering the
required interfaces, all from within Simulink. It is also
the most direct path to simulating and testing
algorithms in real-time.

Sensor Fusion and Motion Control for Autonomous Racing Cars

Development
computer

Target computer Physical system

Figure 2 - Simulink Real-Time™ workflow

MATLAB, Simulink,
MATLAB Coder,

Simulink Coder and
Simulink Real-Time

Multi-core CPU running
Simulink Real-Time kernel,

FPGAs, I/O and protocol
interfaces

Hardware under test
with sensor and actuator

interfaces

Ethernet I/O

�e �lter combines a dynamic system model and the
sensor measurements. �e model takes the current
accelerations and yaw rate as inputs, and predicts the
upcoming states using Newtonian mechanics. �e
velocity and position measurements are used to correct
the predicted vehicle state. �is simple model is superior
to more complex vehicle dynamics models (e.g. a
single-track model) as it does not introduce model bias
in the nonlinear tire region due to inevitable parameter
mismatch. In the sensor setup described, which is
similar to others commonly used for autonomous
driving, the choice of this simple model improves state
estimation quality, rather than making it worse by
introducing incorrect assumptions about tire or vehicle
parameters. At the same time, the model is
computationally cheap and delivers robust performance
independent from the driving scenario. Details and
theoretical background on this concept can be found in [2].

Methodology

�is section describes the real-time control so�ware of
the TUM autonomous driving so�ware stack. Its
high-level architecture [3-4] is depicted in Figure 3. �e
so�ware is split into a planning and a control module. As
stated above, the control so�ware module is executed on
a real-time control unit to guarantee accurate timing in
dynamic driving maneuvers. �e real-time control
so�ware itself is divided into sensor fusion and vehicle
motion control.

Sensor Fusion
�e sensor fusion module is based on an Extended
Kalman Filter combining measurements from di�erent
sensors. It allows the fusion of vehicle acceleration as
well as yaw rate measurements (coming from an inertial
measurement unit (IMU)), velocity measurements (e.g.
an optical �ow sensor or wheel speed sensors) and
multiple localization sources. �e localization signals
may come from GPS, LIDAR-SLAM or Visual-SLAM.
�e minimum setup required for operation is one
localization source and one IMU sensor. On the Devbot
2.0, a GPS and an IMU sensor are used.

Sensor Fusion and Motion Control for Autonomous Racing Cars

Figure 3 - Software architecture

Real-Time Control ECU

Target
Trajectory

Steering
& Force
Request

Sensor Data

Vehicle
& Actuators

Sensor
Fusion

Trajectory
Tracking

Controller

Curvature
& Velocity
Controller

Trajectory
Planning

the relation between the steering angle, vehicle velocity
and driven curvature and adds a correction signal to the
neutral steer assumption based on past data. �e
learning component compensates under- and
oversteering as well as small steering actuator
miscalibrations. �e curvature controller is completed by
a proportional feedback gain to reduce the in�uence of
external disturbances and model uncertainty.
�e longitudinal control task is covered by a velocity
controller. It consists of a feedforward part, based on a
stationary inverse powertrain model which compensates
for driving resistances such as aerodynamic drag, and a
proportional feedback combined with a disturbance
estimation. �e latter estimates the di�erence between
the expected acceleration and actual measured
acceleration and applies correction signals if they are not
equal. �is helps to mitigate unmodeled e�ects, such as
track inclination.

Vehicle Motion Control

�e vehicle motion control part of the so�ware generates
appropriate steering and overall traction force requests
based on the target trajectory and the current vehicle
position. Its overall structure is depicted in Figure 4. �e
vehicle speed and the deviation from the target path are
controlled. Furthermore, the lateral dynamics are
stabilized via a low-level curvature controller. All
controllers are based upon a two degrees of freedom
architecture, separating the control request generation
into a feedforward part and a feedback part [3].

�e setpoint for the curvature controller is derived from
a feedforward term for the current path curvature and a
feedback part based on the lateral deviation and the
velocity heading error. �e curvature setpoint is
converted into a steering angle using a neutral steer
assumption from the basic vehicle kinematics.
Furthermore, a learning component monitors

Sensor Fusion and Motion Control for Autonomous Racing Cars

Figure 4: Vehicle motion control structure

+

+

Estimated
Vehicle
Position

Estimated Vehicle State

Acceleration Setpoint
Force

Request

Steering
Angle

Request

Velocity Setpoint

Curvature
Setpoint

Path
Curvature

Lateral
Deviation

Corrective
Curvature

Heading
Deviation

Target
Trajectory

Disturbance
Estimation

Feedforward
Powertrain

Velocity
P-Controller

Feedforward
Neutral-Steer

Learned
Feedforward

Curvature
P-Controller

Path
Matching

+

Lateral Position
PD-Controller

simulation on a separate real-time system. �e actual
vehicle control so�ware can therefore be tested in a
classic HIL setting. Example models for both setups are
available from the so�ware repository [5].

Software Design Methodology for Simulink

�e so�ware is designed using several advanced
Simulink design techniques, which will be described
below in addition to the reasons for using these
techniques within the development work�ow.

Most importantly, the use of Simulink Projects enables
the vehicle control so�ware and the vehicle simulation to
be separated into di�erent so�ware repositories. �e
vehicle control so�ware project references the vehicle
simulation project. �is allows the models managed in
the simulation repository to be used within the
controller development repository. Simulink Project
manages the MATLAB path and allows a de�ned and
reproducible working environment to be created for
development and code generation on multiple
development computers.

Referenced Models and Bus De�nitions help make the
so�ware modular. �e so�ware consists of
approximately 20 Simulink models (*.slx), which either
provide a de�ned functionality or can be used to create
di�erent models. �eir interfaces are speci�ed
independently from the models by utilizing Bus
De�nitions. �is ensures consistent interfaces and is
checked during the model update process. �e
separation into multiple �les provides a natural
separation of concerns, a well-known so�ware
development paradigm, and furthermore eases version
control. Another technique to improve version control
capabilities is to outsource complex functionality to
.m-Files which can be called using Simulink MATLAB
Function blocks. �is enables text-based comparison and
merge tools to be used in the version control so�ware.

Vehicle Dynamics Simulation
�e simulation environment used for developing and
evaluating the controller is based on a dual-track model.
�is choice is common for controller development, as it
considers the most signi�cant e�ects for vehicle motion
control. It includes the combined lateral and longitudinal
nonlinear tire behavior, the lateral and longitudinal load
transfer for the tires as well as the wheel dynamics. �e
Vehicle Dynamics Blockset (VDBS) developed by
MathWorks provides the building blocks required to
create such models as well as several reference
applications to get started easily. �e results presented in
this article were obtained using the passenger vehicle
model from the Double-Lane Change Maneuver
reference application from MathWorks. �e vehicle
model in conjunction with the TUM so�ware stack were
used to build a real-time simulation. An advanced
version of this simulation model with modi�cations to
meet the requirements of autonomous racing is also
available in the open source so�ware repository [5].

Real-Time Deployment to Speedgoat
machines
�is section outlines how the sensor fusion and vehicle
control pipeline can be modeled within Simulink and
then deployed to the Speedgoat Mobile real-time target
machine using Simulink Real-Time. �e models are
divided into the three parts depicted in Figure 5: �e
vehicle simulation (tires, vehicle body, actuators and
sensors), the vehicle control so�ware and the trajectory
planning emulation (provides the interface to the
trajectory planning so�ware and basic functionality for
development purposes). �is article and the
corresponding so�ware stack present two di�erent
variants for e�ective real-time testing: �e �rst variant
deploys all so�ware components onto a single real-time
system and leverages loopback hardware interfaces for
communication between them. �e second variant
deploys the trajectory planning emulation and vehicle

Sensor Fusion and Motion Control for Autonomous Racing Cars

https://de.mathworks.com/products/vehicle-dynamics.html
https://de.mathworks.com/help/vdynblks/ug/double-lane-change-maneuver.html

several vehicles are running the same code but require
di�erent control parameters. Furthermore, DDs may
reference other DDs. A prominent use case for this is the
interface DD for the Bus De�nitions or a vehicle
parameter DD.

�e complete real time application runs with a sample
rate of two milliseconds and uses the ode2-solver. �is
con�guration has proven to o�er a good trade-o�
between accuracy and computational speed. �e
controller itself operates at four milliseconds and uses
the �xed-step discrete solver.

Finally, the so�ware uses Data Dictionaries (DD). �ese
�les can be thought of as a private workspace belonging
only to the model to which they are attached. �ey allow
the designer to separate algorithm development from
data storage and can store multiple di�erent
parametrizations per algorithm. �is is useful in case

Deployment to Speedgoat Real-Time Target
Machine via Simulink Real-Time
�is section describes the con�guration of the loop-back
simulation example setup (see Figure 5). A similar
procedure can be applied for the HIL variant. �e I/O
modules of the target machines used for the examples
slightly di�er from the ones in the DevBot, however the
con�guration approach remains the same.

First, two real-time UDP interfaces and the CAN
interface of the IO614 module must be con�gured as
depicted in Figure 6. We will use 10.0.1.0 as the IP for the
controller interface and 10.0.2.0 as the IP for the trajectory
planning interface. �e CAN interface of the controller
is Module ID 1 – Port 1 and the interface of the vehicle
simulation is Module ID 1 – Port 2. �is results in the
structure depicted in Figure 3. In the examples provided,
sensor signals can be grouped into CAN messages and
therefore be easily changed directly in Simulink. �e
UDP messages are handled in a similar way.

Sensor Fusion and Motion Control for Autonomous Racing Cars

Figure 5 - Real-time testing setup variants

Figure 6 - Hardware configuration of loop-back testing model

Real-Time Testing Unit

Loopback Testing Setup Hardware-in-the-loop Testing Setup

Trajectory Planning
Emulation

Real-Time Control
Software

Vehicle
& Actuators

Ethernet

CAN

Real-Time ECU Real-Time Testing Unit

Trajectory Planning
Emulation

Real-Time Control
Software

Vehicle
& Actuators

Ethernet

CAN

Speedgoat
IO614
Setup

Module ID: 1
Port: 1-CAN, 2-CAN,

3-CAN, 4-CAN

Con�gure UDP

IP address: 10.0.1.0
PCI bus:14 slot:0 function:0

Con�gure UDP

IP address: 10.0.2.0
PCI bus:16 slot:0 function:0

�e largest lateral deviations occur in a demanding
le�-right, high-speed combination right a�er the back
straight. A real-world evaluation of the control so�ware
for a Roborace DevBot on the Berlin 2019 Formula-E
racetrack is presented in [3].

Results
�e VDBS double-lane change example model together
with the so�ware stack running on the HIL setup
mentioned above accurately predicts the driving behavior
on the Monteblanco racetrack, Spain (see Figure 7).
�e open source repository [5] provides several racetracks
to enable controller development. �e required target
trajectories have been created using a so�ware package
developed by the Chair of Automotive Technology at
TUM, which can be accessed at GitHub. Please see the
Readme of this so�ware package for further details.

Vehicle Motion Control Performance

�e tracking performance of the vehicle motion
controller for the standard VDBS vehicle is depicted in
Figure 8. �e �gure shows good tracking performance
under challenging vehicle dynamics conditions with
longitudinal and lateral accelerations up to 9m / s2, even
though the vehicle under control is not a racecar.

Sensor Fusion and Motion Control for Autonomous Racing Cars

Figure 7 - Monteblanco racetrack, Spain

Figure 8 - Trajectory tracking performance

https://github.com/TUMFTM/global_racetrajectory_optimization

Conclusion
We have presented a real-time control so�ware stack
capable of autonomous driving at the limits of handling.
It consists of a sensor fusion and a vehicle motion control
part. In fact, we have illustrated two concepts for
real-time testing: A basic version running on a single
real-time target machine and a full HIL setup for testing
the vehicle control unit under realistic conditions. �e
open-source so�ware stack [5] has examples for both
setups and is therefore a good starting point for further
development.

Sensor Fusion Performance

�e sensor fusion can be easily assessed in a HIL
simulation, because ground truth data is available. �e
so�ware does not have access to velocity measurements
in this setup and therefore estimates the longitudinal
and lateral velocities from the fusion of the localization
and the IMU signals. Figure 9 shows a comparison of the
estimated and the actual velocity obtained from ground
truth logging from the simulation model. A detailed
evaluation of the sensor fusion algorithm using
real-world data is presented in [2].

Sensor Fusion and Motion Control for Autonomous Racing Cars

Figure 9 - Sensor fusion performance

References
[1] What can we learn from autonomous level 5 Motorsport?, J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, T. Stahl, L. Hermansdorfer,
 B. Lohmann and M. Lienkamp, Proceedings of Chassis-Tech 2018
[2] Vehicle Dynamics State Estimation and Localization for High Performance Race Cars, A. Wischnewski, T. Stahl, J. Betz and Boris Lohmann,
 Proceedings of the IAV 2019 Conference
[3] Minimum Curvature Trajectory Planning and Control for an Autonomous Race Car, A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz,
 M. Lienkamp and B. Lohmann, Vehicle System Dynamics
[4] A So�ware Architecture for the Dynamic Path Planning of an Autonomous Racecar at the Limits of Handling, J. Betz, A. Wischnewski,
 A. Heilmeier, F. Nobis, L. Hermansdorfer, T. Stahl, T. Herrmann and M. Lienkamp, Proceedings of the IEEE ICCVE 2019
[5] TUM Racing So�ware Stack, https://github.com/TUMFTM

Photo Credits:
TUM Roborace Team: https://www.mw.tum.de/en/�m/main-research/intelligent-vehicle-systems/roborace-autonomous-motorsport/
All rights reserved.

The Authors:
Alexander Wischnewski, Timo Strässle, and Michael Lüthy

https://www.mw.tum.de/en/ftm/main-research/intelligent-vehicle-systems/roborace-autonomous-motorsport/

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

